Simulating the global distribution of nitrogen isotopes in the ocean
نویسندگان
چکیده
[1] We present a new nitrogen isotope model incorporated into the three‐dimensional ocean component of a global Earth system climate model designed for millennial timescale simulations. The model includes prognostic tracers for the two stable nitrogen isotopes, N and N, in the nitrate (NO3 ), phytoplankton, zooplankton, and detritus variables of the marine ecosystem model. The isotope effects of algal NO3 − uptake, nitrogen fixation, water column denitrification, and zooplankton excretion are considered as well as the removal of NO3 − by sedimentary denitrification. A global database of dNO3 − observations is compiled from previous studies and compared to the model results on a regional basis where sufficient observations exist. The model is able to qualitatively and quantitatively reproduce many of the observed patterns such as high subsurface values in water column denitrification zones and the meridional and vertical gradients in the Southern Ocean. The observed pronounced subsurface minimum in the Atlantic is underestimated by the model presumably owing to too little simulated nitrogen fixation there. Sensitivity experiments reveal that algal NO3 − uptake, nitrogen fixation, and water column denitrification have the strongest effects on the simulated distribution of nitrogen isotopes, whereas the effect from zooplankton excretion is weaker. Both water column and sedimentary denitrification also have important indirect effects on the nitrogen isotope distribution by reducing the fixed nitrogen inventory, which creates an ecological niche for nitrogen fixers and, thus, stimulates additional N2 fixation in the model. Important model deficiencies are identified, and strategies for future improvement and possibilities for model application are outlined.
منابع مشابه
Evaluating the performance of Atmosphere-Ocean Global Circulation Models (AOGCM) in simulating temperature variable in Ahwaz and Abadan stations
Climate changes caused by global warming has presented challenges to human society. Studying the Changes of climate variables in the future decades by using output data’s of Atmosphere-Ocean Global Circulation Models (AOGCM) is a way of perusing climate fluctuation in a region. In this study, the focus is on the AOGCM proceeds in simulating of variable temperature in Ahwaz and Abadan stations. ...
متن کاملComplementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological pump
A three-dimensional, process-based model of the ocean’s carbon and nitrogen cycles, including C and N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run (piCtrl) and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rat...
متن کاملData-based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O2
[1] Oxygen minimum zones (OMZs) are major sites of fixed nitrogen removal from the open ocean. However, commonly used gridded data sets such as the World Ocean Atlas (WOA) tend to overestimate the concentration of O2 compared to measurements in grids where O2 falls in the suboxic range (O2 < 2–10 mmol m !3), thereby underestimating the extent of O2 depletion in OMZs. We evaluate the distributio...
متن کاملA Three-Dimensional Model of the Marine Nitrogen Cycle during the Last Glacial Maximum Constrained by Sedimentary Isotopes
Nitrogen is a key limiting nutrient that influences marine productivity and carbon sequestration in the ocean via the biological pump. In this study, we present the first estimates of nitrogen cycling in a coupled 3D ocean-biogeochemistry-isotope model forced with realistic boundary conditions from the Last Glacial Maximum (LGM) ∼21,000 years before present constrained by nitrogen isotopes. The...
متن کاملIsotopic constraints on the pre-industrial oceanic nitrogen budget
The size of the bioavailable (i.e., “fixed”) nitrogen inventory in the ocean influences global marine productivity and the biological carbon pump. Despite its importance, the pre-industrial rates for the major source and sink terms of the oceanic fixed nitrogen budget, N2 fixation and denitrification, respectively, are not well known. These processes leave distinguishable imprints on the ratio ...
متن کامل